
PrimHOI: Compositional Human-Object Interaction via Reusable Primitives

Kai Jia1,2 *, Tengyu Liu2 *, Yixin Zhu3, Mingtao Pei1�, Siyuan Huang2�

1 School of Computer Science & Technology, Beijing Institute of Technology
2 National Key Laboratory of General Artificial Intelligence, BIGAI 3 School of Psychological and Cognitive Sciences, Peking University

* Equal contributors �peimt@bit.edu.cn, syhuang@bigai.ai Project Website: https://kairobo.github.io/PrimHOI/

������
�������
����������
��
�����
����
���


�	�������������������������������	������
���������������������������������������������

�	���������������������������	�������������
�����
��
�����������	
������������������
���


���������������������������
��������������
�����
�����
�����	������������������
�

�����������	���	������������������� ��������������������	��

������� �	��������
�	���

�������

�����

�������

�	���

�����

�����

�	���









����������������

��	 ������� ������ �����

­��
�����������

��������������
���


������������������������
������������
�
����	�

������������
�����������������������������	��������

�	���

�����

�����

�	���

���������� ��
���������������� ����������

Figure 1. Diverse HOI motions for complex tasks generated by PrimHOI. Given an unseen high-level task description, our PrimHOI
plans and generates diverse HOI motions that fulfill task requirements through spatial and temporal composition of generalizable interaction
primitives. These primitives capture repetitive local contact patterns from everyday interactions, enabling systematic reuse across different
scenarios. PrimHOI achieves zero-shot transfer to unseen HOI tasks without requiring task-specific training data.

Abstract

Synthesizing realistic Human-Object Interaction (HOI) mo-
tions is essential for creating believable digital characters
and intelligent robots. Existing approaches rely on data-
intensive learning models that struggle with the compo-
sitional structure of daily HOI motions, particularly for
complex multi-object manipulation tasks. The exponential
growth of possible interaction scenarios makes comprehen-
sive data collection prohibitively expensive. The funda-
mental challenge is synthesizing unseen, complex HOI se-
quences without extensive task-specific training data. Here
we show that PrimHOI generates complex HOI motions

through spatial and temporal composition of generalizable
interaction primitives defined by relative geometry. Our ap-
proach demonstrates that repetitive local contact patterns—
grasping, clamping, and supporting—serve as reusable
building blocks for diverse interaction sequences. Unlike
previous data-driven methods requiring end-to-end training
for each task variant, PrimHOI achieves zero-shot trans-
fer to unseen scenarios through hierarchical primitive plan-
ning. Experimental validation demonstrates substantial im-
provements in adaptability, diversity, and motion quality
compared to existing approaches.

https://kairobo.github.io/PrimHOI/


1. Introduction
Synthesizing diverse, realistic HOI motions from simple
instructions is essential for character animation [2, 8, 9,
12, 15, 16, 22, 28, 41, 42] and embodied AI applica-
tions [13, 32, 58, 59]. Current approaches map seman-
tic descriptions to HOI motions [20, 26, 45, 53, 54], but
struggle with the nuanced complexity of everyday interac-
tions that require coordinated, interdependent object ma-
nipulation. Consider a seemingly simple task: picking up
two boxes and opening a door. This requires one hand to
be freed for door operation while the other manages both
boxes, possibly with torso assistance. Such interactions de-
mand both spatial composition—coordinating object posi-
tions and states—and temporal composition—sequencing
actions over time, as shown in Fig. 1. Current methods
struggle with these intricate motions as they face chal-
lenges in capturing inter-element dependencies, while the
exponentially growing space of possible interactions makes
comprehensive data collection prohibitively expensive. In
contrast, humans excel at adapting prior skills to novel
tasks through systematic generalization [18, 23, 27, 39, 51],
reusing knowledge by recognizing similarities between fa-
miliar and new situations. This observation raises a funda-
mental question: how can we represent and reuse prior HOI
knowledge as adaptable primitives for unseen tasks?

Recent studies have explored compositional motion gen-
eration through spatial composition of part-level motions [4,
17, 30] and temporal composition of motion segments [3,
10, 11, 24, 50]. However, these approaches focus pri-
marily on spatial or temporal composition alone, leaving
spatiotemporal compositional HOI generation largely un-
explored. While UniUSI [54] and InterDreamer [54] have
made initial attempts at compositional HOI generation, they
are limited by either static object constraints or restrictive
whole-body representations that prevent flexible object dy-
namics and precise local interaction control.

Motivated by these limitations, we propose a new ap-
proach based on the insight that repetitive geometric pat-
terns emerge in localized regions of interaction [5, 41,
60]. Rather than relying on whole-body representations,
we observe that simple interaction types like support or
clamp can be reused across various body parts or objects
while maintaining consistent geometric relationships (see
Fig. 1). We formalize these consistent patterns as interac-
tion primitives—reusable building blocks that capture es-
sential geometric and semantic information of local interac-
tions. This primitive-based representation enables decom-
position of complex HOI tasks into learnable components
that can be flexibly combined for unseen scenarios.

Building on this insight, we introduce PrimHOI, a hier-
archical HOI generation framework that orchestrates inter-
action primitives to accomplish complex tasks from high-
level descriptions. Our approach operates through three key

stages: high-level planning that decomposes tasks into se-
quences of interaction primitives using our symbolic rea-
soning framework PDDL-HOI, key pose generation that in-
stantiates these primitives into specific human-object con-
figurations, and intermediate motion generation that cre-
ates smooth transitions between key poses. We repre-
sent planning problems as subgoal graphs—compositional
symbolic structures where nodes represent manipulable ob-
jects and manipulators, while edges encode physical con-
straints based on interaction primitives. To generate action
sequences, we develop PDDL-HOI by extending PDDL-
Stream [14] and leverage Large Language Model (LLM)-
based task translation to convert high-level descriptions into
executable plans. For motion generation, we sample contact
points using primitive contact models [25], optimize human
poses with pose priors [33], and guide intermediate motion
generation [52] using planned object trajectories.

Our contributions are as follows:
• We introduce interaction primitives—a generalizable rep-

resentation of HOI patterns based on relative geometry
between objects and body parts. This representation en-
ables flexible reuse across different body parts and ob-
jects, allowing complex interactions to be decomposed
into learnable, transferable components.

• We develop PDDL-HOI, a symbolic planning framework
that leverages our primitive representation to enable sys-
tematic composition of interaction sequences. Combined
with LLM-based task translation, this approach supports
diverse and complex HOI scenarios through zero-shot
generalization.

• We present a complete hierarchical synthesis pipeline that
generates realistic HOI motions from high-level task de-
scriptions. Our method demonstrates strong generaliza-
tion capabilities, synthesizing novel multi-object interac-
tions without requiring task-specific training data.

2. Related Work
Guided Human Motion Generation Generating human
motion from limited guidance such as text [19, 20, 26, 28,
36, 45, 48, 55], object trajectories [25], and spatial con-
straints [21, 30, 40, 44, 46, 52] has broad applications in
animation and robotics. Early approaches like TEMOS [36]
employed cVAEs for text-to-motion mapping, while recent
methods like MDM [43] leverage diffusion models for im-
proved distribution modeling. For precise spatial control,
OmniControl [52] adapts ControlNet [56] to provide guid-
ance during diffusion, and ProgMoGen [30] achieves fine-
grained control through latent optimization.

Extending these approaches to HOI motion gener-
ation introduces additional complexity due to coordi-
nated human-object dynamics. IMoS [15] generates text-
conditioned human motion and attaches objects to hands
but lacks lower-body coordination. OMOMO [25] synthe-



������������������������

�����
�����������������
��
����������
���


�������������������

�������	�������
�������������������������	����
������������������������	����
�����	�������
������	
�������������
������	
�������������
������������
����
����������

  ­�
����	��
�����	����

�������
��������


������������������
��
��������������
������������
����	�
�������������
������������
����	�
��������������
����	�����
����	�
�����������	��������
������������
�
����	���	���������
�����������������
�
����
�������

������	����
����

�������� ��������		� ��������		�
����� �	���

������� ���	��������

�	���
�����
�����

��������	���

��
���������������� 
����	�������	����������������

��������������������������������������������

  action GraspToClamp
  :precondition (and
  (Grasped ?o ?bp)
  (CanClamp ?bp1 ?bp2)
  (Empty ?bp1)
  (Empty ?bp2)
     ……. )
  :effect (and
   (Clamped ?o ?bp1 ?bp2)
   (not (Empty ?bp1))
   (not (Empty ?bp2)) )

;;Generate parts that
 can clamp
(:stream 
  sample-clamp-parts
 :outputs (?bp1 ?bp2)
 :certified (and 
(CanClamp ?bp1 ?bp2)
(IsPart ?bp1) 
(IsPart ?bp2)) )
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Figure 2. Overview of PrimHOI. (a) High-Level planning: Given a task description, an LLM translates it into a PDDL problem. Our
PDDL-HOI defines actions (e.g., GraspToClamp) with preconditions and effects, and generates valid body part combinations for interaction
primitives. The symbolic planner produces an action sequence πl with corresponding subgoals. (b) Low-Level generation includes two
components. Key pose generation: For each subgoal, we sample contact points from interaction primitives (e.g., grasp, clamp, support),
then optimize human poses to satisfy these contact constraints, generating key poses Ck. Intermediate motion generation: We plan object
trajectories between key poses and generate human motion guided by contact trajectories. A post-optimization step refines the motion to
ensure smoothness, eliminate penetrations, and maintain consistency with subgoal constraints.

sizes human motion from given object trajectories, while
CHOIS [26] extends this with text-based control. Recent
works [12, 35] integrate affordance prediction to reduce ex-
plicit trajectory guidance. However, these data-driven ap-
proaches struggle with long-horizon, multi-object scenarios
that require complex spatiotemporal reasoning beyond what
can be captured in training data.

Compositional Human Motion Generation To address
the limitations of end-to-end approaches, compositional
methods enhance systematic generalization by decompos-
ing complex motions into reusable components [6, 31, 38].
These approaches operate through two primary strategies:
temporal composition, which sequences motion segments
over time, and spatial composition, which coordinates con-
current body part movements.

Temporal composition methods focus on creating coher-
ent motion sequences from discrete segments. TEACH [3]
and Multi-Act [24] learn smooth transitions between mo-
tion primitives, while UniHSI [47, 50] employs LLM-based
planning to generate contact point sequences for scene in-
teraction. InterDreamer [54] extends this to HOI generation
using LLM for high-level planning and text-to-action mod-
ules for low-level synthesis. Recent work by Wu et al. [49]
combines LLM planning with scene parsing for temporal
sequencing to ensuring physical plausibility.

Complementing temporal approaches, spatial compo-
sition methods coordinate simultaneous body part move-
ments. SINC [4] uses GPT-3 to assign motion factors to dif-

ferent body parts but struggles with conflicting concurrent
motions. CoMo [17] addresses this limitation by decom-
posing motions into distinct part-level codes, while Prog-
MoGen [30] breaks high-level tasks into atomic constraints
for flexible motion editing. STMC [37] provides a uni-
fied framework combining both temporal and spatial com-
position through separate denoising and compositional re-
denoising processes.

While these advances have significantly improved mo-
tion generation capabilities, most focus on either spatial
or temporal composition in isolation, primarily for single-
person scenarios. The challenge of spatiotemporal com-
positional HOI generation—where multiple objects must
be manipulated through coordinated spatial and tempo-
ral reasoning—remains largely unexplored. Our work ad-
dresses this gap by introducing interaction primitives that
enable systematic decomposition and flexible recombina-
tion of both spatial and temporal HOI components for com-
plex multi-object scenarios.

3. The PrimHOI Framework

PrimHOI synthesizes complex Human-Object Interaction
(HOI) motion sequences from high-level task descriptions.
Given a natural language task T (e.g., “pick up two boxes
and open the door”), initial object layout L0, and human
pose xh

t=0, our goal is to generate a complete motion se-
quence x = {xh, xO} that accomplishes the specified task.
Here, xh represents the human motion in SMPLX format,



xO denotes object trajectories, and L0 = {xo
t=0}o∈O spec-

ifies initial poses for the set of objects O.
Directly generating x from high-level descriptions poses

significant challenges due to the inherent complexity of
HOI motions. These tasks require coordinated han-
dling of both spatial composition—managing multi-part
interactions across different body regions—and temporal
composition—sequencing multiple sub-tasks over extended
horizons. To address this complexity, we decompose the
motion into subgoals based on interaction primitives, where
each primitive defines a local contact pattern (e.g., support,
grasp, clamp, dual-support) between body parts and objects.

We represent subgoals as graphs sg that describe in-
teraction predicates between objects and body parts (see
Fig. 2). Each element corresponds to an interaction prim-
itive Pi = {om, f, α}, where om is an object, f specifies
the contact type (e.g., grasped, clamped), and α represents
the interacting body part or object. The set A = {α} en-
compasses all manipulator parts including body parts and
objects O that can interact with other objects.

Following this subgoal-driven approach, we introduce an
intermediate planning process to generate subgoals from the
task description T . This expands our problem to jointly
sampling motion x and plan π from P (x, π|T,C0), which
we decompose as:

x, π ∼ P (x, π|T,C0) = P (x|π,C0)P (π|T,C0). (1)

Our three-stage pipeline first generates a high-level plan
π = {sgk}Kk=1 using PDDL-style planning with LLM,
leveraging domain knowledge from PDDL-HOI to define
the planning space. Subsequently, subgoals are trans-
lated into specific contact positions and keyframe poses
{Ck}Kk=1, where Ck = {Lk, x

h
k,t=0} represents object lay-

out and human pose at the beginning of segment k. Fi-
nally, intermediate motion generation bridges consecutive
key poses, with Lk = {xo

k,t=0}, o ∈ O and t denoting the
frame index within segment k.

3.1. Interaction Primitive Generation
Our approach relies on four manually classified interaction
primitives that capture fundamental contact patterns in HOI
motions, as illustrated in Fig. 3a: support, grasp, clamp, and
dual support. These primitives serve as building blocks for
representing complex manipulation behaviors through their
spatial and temporal combinations.

For each interaction primitive P , we generate ob-
ject contact points {poi }P using a diffusion-based model
P ({poi }P |V), where V ∈ RK×3 represents the object
mesh vertices and i indexes individual contact points. This
data-driven approach learns contextually appropriate con-
tact locations from training data, ensuring generated con-
tacts align with natural interaction patterns.

������� ������������

����� �����

(a) Interaction primitives (b) Body contact points

Figure 3. Contact representations used in PrimHOI. (a) The
four interaction primitives that serve as building blocks for com-
plex manipulation behaviors: support, grasp, clamp, and dual sup-
port. Each primitive defines a specific contact pattern between
body parts and objects, with contact points shown relative to ob-
ject surfaces. Grasp includes two contact points (wrist and hand)
to capture grasping direction, while clamp and dual support each
involve two contact points, and support requires only one contact
point. (b) Body contact points (red dots) are strategically selected
from mocap markers and manual curation, with each body part
shown in a different color to illustrate the discrete vocabulary of
candidate contact locations.

On the body side, we define a discrete set of candidate
contact points {phi } selected from mocap markers [57] and
manual curation, as shown in Fig. 3b. While this vocabulary
is finite, it provides sufficient expressiveness to cover the
wide range of contact configurations encountered in com-
mon manipulation tasks, striking a balance between com-
putational efficiency and representational power.

3.2. High-Level Planning
The high-level planning process transforms natural lan-
guage task descriptions into structured sequences of interac-
tion subgoals, as depicted in Fig. 2. We adapt the Planning
Domain Definition Language (PDDL) [1] and its extension
PDDLStream [14] to create PDDL-HOI, our specialized
HOI planning language that integrates symbolic planning
with constraint sampling.

Leveraging LLM capabilities [29, 34, 54], task
descriptions are translated into PDDL problem for-
mats where interaction primitives become predicates
describing interaction states. For example, predi-
cates (Grasped box1 righthand) and (Clamped
box1 chest left elbow) jointly describe a state
where box1 is simultaneously grasped and clamped.
Actions represent state transitions that modify these
predicates—the action GraspToClamp transitions an ob-
ject to a clamped state, but only when preconditions are sat-
isfied (e.g., clamp parts are empty and the object is already
grasped).

To generate diverse planning solutions, we incorporate
PDDLStream’s streams concept. By removing predicates
that specify which body parts perform specific primitives,
the planner dynamically samples valid body part assign-
ments during planning, enabling varied manipulation strate-



gies for the same task. This process produces multiple plan
candidates {πl}Nl=1 from initial condition C0, each repre-
senting different sequences of subgoal predicates that di-
rectly transfer to subgoal graphs. Additional details are pro-
vided in Appendix A.1.

3.3. Low-Level Generation
The low-level generation creates detailed motion sequences
from abstract high-level plans through two main steps: gen-
erating key poses and producing intermediate motion con-
necting these poses. This process is formulated as:

P (x | π,C0) =
∑

{Ck}K
k=1

P (x | {Ck}Kk=1)

P ({Ck}Kk=1 | {sgk}Kk=1, C0),

(2)

3.3.1. Key-pose Generation
We transform planned subgoal graphs {sgk}Kk=1 into spe-
cific key poses {Ck}Kk=1 sequentially from initial pose C0:

P ({Ck}Kk=1 | {sgk}Kk=1, C0) =
∏K−1

k=0 P (Ck+1 | sgk+1, Ck), (3)

For each key pose Ck, we consider contact point loca-
tions on objects, object placement, and natural body pose
maintenance [33]. Contact points on object surfaces are
sampled using the primitive contact model P ({poi }P |Vo).
When multiple primitives involve the same object, they are
grouped into interaction primitive groups, and compatible
contact configurations are selected to avoid conflicts.

Object poses {xo
k+1,t=0} are sampled from an object

placement prior P (so|{phi } = {poi }P ) that aligns body and
object contact points, where so = xo

k+1,t=0 for brevity. We
use a Mixture of Gaussians for this prior, placing objects
near frequently used body regions. The body pose xh

k+1,t=0

is then optimized with body prior regularization to align
with contact points while incorporating normal constraints
for certain primitives:

P (Ck+1 | sgk, Ck) =
∑
po
i ,so

P (xh
k+1,t=0 | {phi }, xh

k,t=0)∏
Pi∈sgk

P (so | {phi } = {poi }Pi)P ({poi }Pi |Vo),
(4)

3.3.2. Intermediate Motion Generation
After obtaining consecutive key poses, we generate inter-
mediate HOI motion segments to produce the complete se-
quence:

P (x | {Ck}Kk=1}) =
K−1∏
k=0

P (xk | Ck+1, Ck), (5)

where xk = {xk
O, x

k
h} represents the motion segment be-

tween key poses Ck and Ck+1.

The generation process operates in two stages. First,
object trajectories are planned using A* algorithm with
SDF-based collision checking as P (xk

O|Ck, Ck+1), en-
suring smooth transitions and collision avoidance. Sec-
ond, given the inferred contact point sequence {phi,t}t∈Tk

from object trajectories, human motion is generated us-
ing a spatial-guided diffusion model (OmniControl [52]) as
P (xk

h|{phi,t}t∈Tk
, Ck, Ck+1). The complete formulation is:

P (xk
O, x

k
h | Ck+1, Ck) = P (xk

h|{pti}t∈Tk
, Ck, Ck+1)

F ({pti}t∈Tk
|xk

O, Ck, Ck+1)P (xk
O|Ck, Ck+1),

(6)

where F ({pti}|xk
O, Ck, Ck+1) infers body contact points by

maintaining consistent contact positions relative to objects.
We refer readers to Appendix A.2 for additional details.

3.4. Post-refinement Process
While the initial generative HOI motion provides a plausi-
ble sequence, it may lack precise adherence to physical con-
straints and contact accuracy. To enhance realism and cor-
rectness, we apply a post-optimization process to refine the
human motion [30, 52, 54]. This optimization maintains in-
teraction primitive constraints while minimizing collisions
and penetrations.

The optimization objective Eopt comprises six comple-
mentary terms: contact closeness (Econtact), contact normal
alignment (Enormal), body-object collision penalty (Ecolli),
body self-penetration prevention (Epene), temporal smooth-
ness (Etemp), and body pose regularization (Eprior) [33].
The complete optimization objective is formulated as:

Eopt = λcontactEcontact + λnormalEnormal + λcolliEcolli

+ λpeneEpene + λtempEtemp + λpriorEprior,
(7)

where the λ terms control the relative importance of each
constraint. Specific formulations of these loss terms are de-
tailed in Appendix A.3.

4. Experiments
We evaluate PrimHOI’s ability to generate compositional
HOI motions through systematic assessment of both high-
level planning and low-level motion generation capabilities.
Unlike prior text-to-motion approaches [35, 53], our focus
centers on achieving generalization to novel task compo-
sitions using modular interaction primitives. Our evalua-
tion encompasses quantitative metrics for high-level plan-
ning (Sec. 4.2) and low-level generation (Sec. 4.3), comple-
mented by qualitative analysis (Sec. 4.4). Additional exper-
imental details and results are provided in the supplemen-
tary material.

4.1. Implementation Details
We adapt PDDLStream [14] for symbolic planning in
PDDL-HOI, enabling structured reasoning about interac-
tion sequences. The diffusion-based contact generation



model from OMOMO [25] is modified to predict individ-
ual contact points rather than temporal sequences, with
normalization applied to enhance generalization across di-
verse object geometries. Contact data collection follows a
multi-source approach: clamp primitives utilize data from
OMOMO [7], grasp primitives draw from BEHAVE [25],
while support and dual support primitives employ analyti-
cal functions.

For human motion generation guided by contact con-
straints, we retrain OmniControl [52] with enhanced lo-
cal control capabilities, termed LocalControl. Since Om-
niControl does not directly accept contact point guidance,
we train a regressor mapping SMPL-X keypoints to our se-
lected contact points (Fig. 3b), enabling gradient and real-
ism guidance integration. Body pose optimization incorpo-
rates DPoser [33] as a diffusion-based prior that accommo-
dates incomplete keypoint targets. Complete implementa-
tion details are provided in Appendix A.

4.2. High-Level Planning Evaluation
To validate our structured planning approach, we compare
PDDL-HOI against three baseline methods: GPT-4o (direct
task-to-plan generation), GPT-4o + Primitives (incorporat-
ing interaction primitive definitions as prior knowledge),
and GPT-4o + PDDL-HOI (our hybrid approach).

Evaluation Metrics We assess planning quality using
three complementary metrics: Success Rate measures the
proportion of plans that successfully complete the task,
Plan Efficiency quantifies the mean number of actions in
successful plans, and Solution Diversity counts the number

Table 1. High-level planning performance comparison across
task complexity levels. We evaluate each method on Task 1 and
Task 2 (5 trials each) and Task 3 (10 trials). Our GPT-4o + PDDL-
HOI approach demonstrates superior performance in success rate
and solution diversity, while maintaining competitive plan effi-
ciency across all complexity levels.

Task 1: Pick up two boxes from table

Method Success Rate Plan Efficiency Solution Diversity

GPT-4o 4.0/5 5.7 1.6/5
GPT-4o + PDDL-HOI (ours) 5.0/5 4.6 2.0/5

Task 2: Carry long box passing the door

Method Success Rate Plan Efficiency Solution Diversity

GPT-4o 5.0/5 4.0 1.2/5
GPT-4o + Primitives 5.0/5 4.2 1.8/5
GPT-4o + PDDL-HOI (ours) 5.0/5 4.0 2.0/5

Task 3: Pick up two boxes and open the door

Method Success Rate Plan Efficiency Solution Diversity

GPT-4o 5.6/10 9.1 2.0/10
GPT-4o + Primitives 1.8/10 5.0 1.0/10
GPT-4o + PDDL-HOI (ours) 10/10 6.1 2.8/10

of different plans among successful ones (excluding left-
right symmetry). Human evaluators assessed these metrics
across three tasks (Tab. 1).

Task Design Three tasks include: Task 1 (one simple
task), Task 2 (requiring flexibility to carry the box on the
shoulder and hand for dual support), and Task 3 (requiring
longer planning capability additionally).

Results Analysis In Task 1, GPT-4o and GPT-4o +
PDDL-HOI performed comparably, although GPT’s plans
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(a) One part guided generation
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(b) Multi-step guided generation

Figure 4. Evaluation of contact-guided motion generation capabilities. We compare (a) one-part guided generation and (b) multi-step
guided generation across different methods. Red/blue boxes highlight critical time frames that demonstrate our LocalControl method’s
superior performance in maintaining contact constraints and generating realistic motions.



Table 2. Low-level motion generation performance across task
configurations. We compare LocalControl against baseline meth-
ods on four motion generation tasks. C.Err.-se denotes constraint
error at start/end positions, C.Err./g evaluates trajectory/goal con-
straints. Results demonstrate the necessity of intermediate trajec-
tory planning and multi-step generation for complex HOI motions.

Task 1: One part move with one contact trajectory guidance

Method Success Max Acc. C.Err. Naturality

IK 6.2 0.062 0.43 6.5
ProgMoGen [30] 6.7 0.020 0.170 7.2
LocalControl (ours) 7.3 0.147 0.079 8.3

Task 2: Setting start and end of target positions for one part

Method Success Max Acc. C.Err.-se Naturality

ProgMoGen [30] w/o Traj 2.6 0.061 0.274 4.4
LocalControl w/o Traj 6.6 0.146 0.050 4.9
LocalControl w/ Traj (ours) 7.3 0.147 0.079 8.3

Task 3: One part move and goal contact achieve

Method Success Max Acc. C.Err./g Naturality

IK 6.3 0.077 0.136/0.097 6.5
ProgMoGen [30] 7.7 0.021 0.084/0.058 7.9
LocalControl (ours) 8.4 0.156 0.130/0.045 8.5

Task 4: Two-step motions

Method Success Max Acc. C.Err. Naturality

ProgMoGen [30] 5.1 0.023 0.241 6.0
LocalControl x1 6.3 0.234 0.153 6.2
LocalControl x2 (ours) 7.4 0.198 0.129 6.6

sometimes produced redundant steps, whereas GPT-4o +
PDDL-HOI provided clearer and more efficient plans. In
Task 2, both GPT-4o + Primitives and GPT-4o + PDDL-
HOI discovered additional solutions due to prior knowl-
edge. In the more complex Task 3, GPT-4o + Primitives
often failed due to misunderstandings of transition rules
in interaction primitives, despite occasionally finding the
most efficient solution (e.g., ’clamp under shoulder’). GPT-
4o generated tedious solutions involving unnecessary steps,
such as placing boxes before opening the door. Our GPT-
4o + PDDL-HOI achieved the highest success rate and
diversity, benefiting from clearly defined state transition
rules and diverse contact mode knowledge. More details
of planning results and data statistics can be found in Ap-
pendix B.1.

4.3. Low-Level Generation Evaluation
Since there are no publicly available baselines for our de-
signed compositional HOI tasks, we compare our method
with existing guided motion generation methods that use
interaction constraints but ignore specific object geome-
try [30, 52]. ProgMoGen [30] and an inverse kinematic
method (IK) with human pose regularization [33] and tem-
poral smoothness serve as comparison baselines.

Evaluation Metrics We use four metrics for evaluation:
Maximum Joint Acceleration [30] measures the smooth-

Table 3. Performance comparison between OmniControl and
LocalControl on distribution-based metrics. We evaluate each
method using its corresponding training data configuration. Local-
Control achieves superior FID scores, particularly for dual-hand
guidance tasks, demonstrating the benefits of focusing on local
manipulation operations over global motion patterns.

Original HumanML3D

Method Joints Guide FID ↓ R-precision (top-3) ↑ Diversity →

OmniControl Pelvis 0.322 0.691 9.545
OmniControl Left Wrist 0.304 0.680 9.436
OmniControl Right Wrist 0.299 0.692 9.519
OmniControl Right + Left Wrist 0.464 0.677 9.601

‘No-Walk’ HumanML3D

Method (ours) Contact Points Guide FID ↓ R-precision (top-3) ↑ Diversity →

LocalControl Chest Contact 0.263 0.603 8.859
LocalControl Left Hand Contact 0.292 0.610 8.653
LocalControl Right Hand Contact 0.231 0.606 8.585
LocalControl Left + Right Hand 0.151 0.605 8.674

ness of joint movements; Constraint Error [30] assesses
how well the generated motion follows the guidance con-
straints. The two additional metrics Naturality and Suc-
cess are evaluated by humans ranging from 1.0 to 10.0 for
the naturality of human motion (adherence to human kine-
matics) and the level of success in completing the guid-
ance tasks respectively. Success considers whether the body
parts move from the start to the end following the trajectory
or maintain a static constrained point.

Experimental Results We evaluated four tasks to demon-
strate the robustness of our pipeline design, illustrated in
Fig. 4 and Tab. 2. Comparing LocalControl with ProgMo-
Gen [30] across all tasks, we observe that while ProgMo-
Gen achieves the best maximum acceleration (indicating
smoother motion), our method outperforms in most other
metrics. As shown in Fig. 4, ProgMoGen’s performance is
limited by the expressive power of the latent vector in its
optimization process [30].

By comparing LocalControl with and without intermedi-
ate trajectory guidance in both quantitative and qualitative
results of Task 2, we demonstrate the necessity of planning
intermediate contact guidance. Without it, the intermediate
motion can be random, potentially causing severe collisions
between objects and humans. Finally, comparing single-run
and multi-run approaches in Task 4, we find that generating
the motion in two runs with the inferred intermediate key
pose leads to more accurate and natural results, highlight-
ing the importance of key pose inference to reduce error
accumulation over long sequences.

Model Comparison Analysis To evaluate the perfor-
mance of LocalControl compared with the original Omni-
Control [52], we provide results of FID, R-precision, and
Diversity using different training data versions (Tab. 3). For
the ‘No-Walk’ HumanML3D, we disable the root’s trans-
lation and rotation variations. LocalControl’s FID out-
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Figure 5. Interactive primitive refinement and diversification.
Starting from a single frame generated by InterDiff [53], our inter-
action primitive model produces multiple refined solutions that ex-
hibit improved physical realism and increased diversity. Each ex-
ample demonstrates different plausible ways to complete the HOIs
while maintaining contact constraints.

performs OmniControl (especially for dual-hand guidance)
since there is less variation in the ‘No-Walk’ HumanML3D,
allowing focus on learning local operations. For evaluat-
ing out-of-distribution motions such as multi-object inter-
actions, distribution-based FID becomes unreliable for nat-
uralness assessment, leading us to prioritize human evalua-
tion for our multi-object cases. We include details of human
evaluation and data statistics in Appendix B.2.

4.4. Ablations
Qualitative Results of Different Components To illus-
trate the generalization capabilities of our method, we
present a complete motion sequence for the novel task “Pick
up two boxes and open the door” in Fig. 6. Qualitative re-
sults for primitive contact generation and key pose gener-
ation are provided in Figs. 1 and 3 respectively. Finally,
we demonstrate the benefits of refining poses using our
learned local interaction model—interaction primitives. As
shown in Fig. 5, applying our generative interaction prim-
itive model to outputs from InterDiff [53] enhances physi-
cal realism and diversifies contact poses. In Appendix D.1,
we present additional qualitative results, including two ex-
tra plans and generated motions for other objects.

Additional Ablations We conducted ablations on the in-
teraction primitive model to evaluate the sampling proce-
dure and normalization modifications, as detailed in Ap-
pendix C.1. Additionally, since the post-optimization step
involves multiple terms, we provide a qualitative ablation
study in Appendix C.2 to assess the effect of each term.

5. Conclusion
We presented PrimHOI, a novel framework for synthe-
sizing complex daily-life HOI motions through symbolic
planning and generalizable interaction primitives. By de-
composing HOI generation into reusable submodules, our
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Figure 6. Synthesized motion sequence for the “pick up two
boxes and open door” task. PrimHOI generates a complete
motion sequence that demonstrates coordinated use of interaction
primitives throughout the task execution. Highlighted text annota-
tions indicate the specific interaction primitives (Grasp and Sup-
port) being employed at each step, showing how PrimHOI seam-
lessly transitions between different contact states to accomplish
the complex multi-object manipulation task.

method demonstrates that symbolic planning can comple-
ment data-driven approaches to achieve systematic gener-
alization across different spatial configurations, diverse ob-
jects, and temporal compositions. While this modular de-
sign enables zero-shot transfer to out-of-distribution multi-
object scenarios, it also introduces challenges in recompos-
ing submodules into seamless motion due to the separation
of interdependent variables.

Capabilities and Limitations Our framework’s flexible
temporal and spatial composition enables strong generaliza-
tion despite using only four interaction primitives (Fig. 2).
Adding new primitives is straightforward, as demonstrated
in Appendix A.4, which also discusses motion diversity.
However, the inherent decomposition can introduce fail-
ures when interdependent variables are separated (Ap-
pendix D.3), and individual submodules have limitations
that affect motion quality (Appendix D.2). We discuss po-
tential improvements in Appendix E.
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Edoardo Maria Ponti. Modular deep learning. arXiv
preprint arXiv:2302.11529, 2023. 3

[39] Ananya Rastogi. Learning about few-shot concept learning.
Nature Computational Science, 2(11):698, 2022. 2

[40] Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris
Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. Trace
and pace: Controllable pedestrian animation via guided tra-
jectory diffusion. In Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 2

[41] Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Za-
man. Local motion phases for learning multi-contact charac-
ter movements. ACM Transactions on Graphics (TOG), 39
(4):54–1, 2020. 2

[42] Omid Taheri, Vasileios Choutas, Michael J Black, and Dim-
itrios Tzionas. Goal: Generating 4d whole-body motion
for hand-object grasping. In Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2

[43] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel
Cohen-or, and Amit Haim Bermano. Human motion diffu-
sion model. In Proceedings of International Conference on
Learning Representations (ICLR), 2023. 2

[44] Weilin Wan, Zhiyang Dou, Taku Komura, Wenping Wang,
Dinesh Jayaraman, and Lingjie Liu. Tlcontrol: Trajectory
and language control for human motion synthesis. arXiv
preprint arXiv:2311.17135, 2023. 2

[45] Zan Wang, Yixin Chen, Tengyu Liu, Yixin Zhu, Wei Liang,
and Siyuan Huang. Humanise: Language-conditioned hu-
man motion generation in 3d scenes. Proceedings of Ad-
vances in Neural Information Processing Systems (NeurIPS),
35:14959–14971, 2022. 2

[46] Zhenzhi Wang, Jingbo Wang, Dahua Lin, and Bo Dai. Inter-
control: Generate human motion interactions by controlling
every joint. arXiv preprint arXiv:2311.15864, 2023. 2

[47] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large lan-
guage models. Proceedings of Advances in Neural Informa-
tion Processing Systems (NeurIPS), 35:24824–24837, 2022.
3

[48] Qianyang Wu, Ye Shi, Xiaoshui Huang, Jingyi Yu, Lan
Xu, and Jingya Wang. Thor: Text to human-object inter-
action diffusion via relation intervention. arXiv preprint
arXiv:2403.11208, 2024. 2

[49] Zhen Wu, Jiaman Li, Pei Xu, and C Karen Liu. Human-
object interaction from human-level instructions. arXiv
preprint arXiv:2406.17840, 2024. 3

[50] Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei
Zhang, Bo Dai, Dahua Lin, and Jiangmiao Pang. Unified
human-scene interaction via prompted chain-of-contacts. In
Proceedings of International Conference on Learning Rep-
resentations (ICLR), 2024. 2, 3

[51] Sirui Xie, Xiaojian Ma, Peiyu Yu, Yixin Zhu, Ying Nian
Wu, and Song-Chun Zhu. Halma: Humanlike abstraction
learning meets affordance in rapid problem solving. In ICLR
Workshop on Generalization beyond the training distribution
in brains and machines, 2021. 2

[52] Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and
Huaizu Jiang. Omnicontrol: Control any joint at any time for
human motion generation. In Proceedings of International
Conference on Learning Representations (ICLR), 2024. 2, 5,
6, 7, A1

https://chat.openai.com/


[53] Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan
Gui. Interdiff: Generating 3d human-object interactions with
physics-informed diffusion. In Proceedings of International
Conference on Computer Vision (ICCV), 2023. 2, 5, 8

[54] Sirui Xu, Yu-Xiong Wang, Liangyan Gui, et al. Inter-
dreamer: Zero-shot text to 3d dynamic human-object inter-
action. Proceedings of Advances in Neural Information Pro-
cessing Systems (NeurIPS), 37:52858–52890, 2024. 2, 3, 4,
5

[55] Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong
Zhang, Hongwei Zhao, Hongtao Lu, Xi Shen, and Ying
Shan. Generating human motion from textual descriptions
with discrete representations. In Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.
2

[56] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of International Conference on Computer Vi-
sion (ICCV), 2023. 2

[57] Yan Zhang, Michael J Black, and Siyu Tang. We are more
than our joints: Predicting how 3d bodies move. In Proceed-
ings of Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2021. 4

[58] Zihang Zhao, Yuyang Li, Wanlin Li, Zhenghao Qi, Lecheng
Ruan, Yixin Zhu, and Kaspar Althoefer. Tac-man: Tactile-
informed prior-free manipulation of articulated objects.
IEEE Transactions on Robotics (T-RO), 41:538–557, 2024.
2

[59] Zihang Zhao, Wanlin Li, Yuyang Li, Tengyu Liu, Boren Li,
Meng Wang, Kai Du, Hangxin Liu, Yixin Zhu, Qining Wang,
et al. Embedding high-resolution touch across robotic hands
enables adaptive human-like grasping. Nature Machine In-
telligence, 7(6), 2025. 2

[60] Keyang Zhou, Bharat Lal Bhatnagar, Jan Eric Lenssen, and
Gerard Pons-Moll. Toch: Spatio-temporal object-to-hand
correspondence for motion refinement. In Proceedings of
European Conference on Computer Vision (ECCV), 2022. 2



PrimHOI: Compositional Human-Object Interaction via Reusable Primitives
Supplementary Material

A. Method and Implementation Details

A.1. High-Level Planning Details

Our PDDL-HOI planning domain consists of two files:
domain.pddl, which specifies predicates and actions,
and stream.pddl, which defines sampling streams for
manipulating parts. Fig. A1 illustrates the construction of
our planning framework.

Domain Definition In domain.pddl, we use predi-
cates to describe static facts and dynamic states. Static
predicates like (IsObject box1) represent unchang-
ing truths, while dynamic predicates such as (Grasped
box1 righthand) describe evolving states. The deriva-
tive predicates can be inferred from simple predicates: for
example, (Holden?o) holds when the object ?o is held
by any interaction primitive.

Actions define state transitions through preconditions
and effects. Fig. A1 shows the action GraspToClamp,
which transitions an object to a clamped state only when
preconditions are satisfied (e.g., clamping parts are empty
and the object is already grasped).

Stream Sampling The stream.pddl file declares
sampling functions implemented elsewhere in the codebase.
Streams enable dynamic sampling of manipulation parts by
generating available predicates during planning rather than
initially providing them.

A.2. Low-Level Generation Details

Primitive Contact Model Adapted from OMOMO [25],
our contact generation uses a conditional diffusion model:

P ({poi }P |Vo) = Q({poi }P |{p
∗,o
i }P ,Vo), (A1)

where Q represents the denoising process, {p∗,oi }P are ini-
tial noisy contact points, and outputs {poi }P are relative po-
sitions to the object center.

We collected interaction data from multiple sources: 378
video sequences from OMOMO for Clamp contacts (boxes,
suitcases, monitors, trashcans, plastic containers) and 937
frames from BEHAVE [7] for Grasp data (boxes, trashbins,
yoga mats, keyboards). For Support and Dual Support, we
employ analytical functions that generate physically valid
contact points with random rotational deviations up to 30°
from horizontal.

Object scale normalization using the oriented bound-
ing box radius significantly improves generalization across
shape and pose variations.

Key Pose Generation Details The generation of key
poses involves three sequential steps as shown in Fig. A2:
generation of interaction primitive, placement of objects,
and optimization of body poses.

The object placement prior P (so | {phi } = {poi }Pi)
uses Mixture of Gaussians distributions computed from BE-
HAVE clusters, positioning objects where interactions com-
monly occur relative to the human body. When multiple
primitives are involved, placement follows priority order:
Clamp/Support/Dual-Support > Grasp.

Body pose optimization aligns contact points using
DPoser [33] while maintaining pose plausibility. This sys-
tem provides flexibility through valid placement and diver-
sity through data clustering.

LocalControl Implementation Since OmniControl [52]
performs poorly for stationary body movements with active
limb manipulation, we retrained it focusing on local opera-
tions, creating LocalControl. For walking tasks, we retain
the original OmniControl model.

During inference, we add static control signals to the feet
to maintain body stability. Due to potential misalignment
between guidance and generated positions in final frames,
we employ inverse kinematics for “last mile” operations
where collisions occur frequently (Fig. A9).

A.3. Optimization in Key Pose Generation and Post-
Refinement

The post-optimization process maintains interaction prim-
itive constraints while minimizing collisions and penetra-
tions. The optimization objective comprises six comple-
mentary terms, with key pose generation using single-frame
versions of these temporal formulations.

Contact Loss We minimize the Geman-McClure error
function ρ (robust to outliers) between body and object con-
tact points:

Econtact =

T−1∑
t=0

∑
Pi

ρ(ph
i − po

i )
Pi , (A2)

where Pi represents interaction primitives maintained dur-
ing motion.

Normal Loss For Support and Dual Support primitives,
we minimize the cosine distance between human and object
surface normals:

Enormal =

T−1∑
t=0

∑
Pi

cosine(nh
i ,n

o
i )

Pi , (A3)

where nh
i and no

i are outward human and inward object
surface normals, respectively.



(define (stream object-manipulation)

;; Stream to generate parts that can grasp and are empty
(:stream sample-grasp-part

:outputs (?bp)
:certified (and (CanGrasp ?bp) (IsPart ?bp))

)

;; Stream to generate parts that can pan-hold
(:stream sample-support-part

:outputs (?bp)
:certified (and (CanSupport ?bp) (IsPart ?bp))

)

;; Stream to generate pairs of parts that can clamp
(:stream sample-clamp-parts

:outputs (?bp1 ?bp2)
:certified (and (CanClamp ?bp1 ?bp2) (IsPart ?bp1) (IsPart ?bp2))

)

;; Stream to generate pairs of parts that can clamp
(:stream sample-dualsupport-parts

:outputs (?bp1 ?bp2)
:certified (and (CanDualSupport ?bp1 ?bp2) (IsPart ?bp1) (IsPart ?bp2))

)
….
)

stream.pddldomain.pddl

(define (domain object-manipulation)
(:predicates
;; Type Declarations
(IsPart ?p)
(IsObject ?o)
….
;; States
(Grasped ?o ?bp)
(Support?o ?bp)
(Clamped ?o ?bp1 ?bp2)
(DualSupport ?o ?bp1 ?bp2)
(IsReached ?o)
(Empty ?bp)
(Holden ?o)
(IsSupporten ?o)
(IsDualSupport ?o)
(IsGrasped ?o)
(IsClamped ?o)
;; Derived predicate
(:derived (Holden ?o)

(or
(IsGrasped ?o)
(IsSupporten ?o)
(IsDualSupport ?o)
(IsClamped ?o))

)
….

(:action GraspToClamp
:parameters (?o ?bp ?bp1 ?bp2)
:precondition (and

(IsObject ?o)
(IsPart ?bp)
(IsPart ?bp1)
(IsPart ?bp2)
(not (SameSide ?bp ?bp1))
(not (SameSide ?bp ?bp2))
(Grasped ?o ?bp)
(not (IsClamped ?o)) ;; no multi-clamp
(CanClamp ?bp1 ?bp2)
(or
(Empty ?bp1)
(IsObjTool ?bp1) ;; allow use object

)
(not (= ?o ?bp1))
(Empty ?bp2)

)
:effect (and

(Clamped ?o ?bp1 ?bp2)
(not (Empty ?bp1))
(not (Empty ?bp2))
(IsClose ?bp ?bp1)
(increase (total-cost) 1)))

….

Figure A1. PDDL-HOI consists of two complementary files. The domain.pddl file defines predicates, actions, and state transitions,
while stream.pddl specifies sampling functions for dynamic body part selection. The example shows the GraspToClamp action,
which transitions objects from grasped to clamped states when preconditions are met. This modular design enables flexible primitive
combinations during planning.
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One subgoal: 
support two boxes. 

Figure A2. Key pose generation follows a three-stage pipeline.
Starting from planned subgoal sgk, we first generate primitive
contact points (red and blue dots), then position objects using
learned interaction location priors, and finally optimize body pose
to satisfy contact constraints. Hand-only interactions bypass
multi-primitive coordination by relying solely on object placement
priors.

Collision Penalties Object collision loss prevents body-
object interpenetration using signed distance fields:

Ecolli =

T−1∑
t=0

∑
o∈O

min(sdfo(vh), 0), (A4)

where vh represents the vertices of the human body.
Self-penetration loss prevents limb-torso intersections:

Epene =

T−1∑
t=0

∑
li

min(sdftorso(v
li), 0), (A5)

where li denotes the limbs and vli represents the vertices of
the arm.

Temporal and Prior Regularization Temporal smooth-
ness is enforced through vertex consistency between adja-
cent frames:

Etemporal =

T−1∑
t=0

ρ(vh
t+1 − vh

t ). (A6)

Body pose regularization employs DPoser [33]
diffusion-based loss:

Eprior =

T−1∑
t=0

LDPoser(Θt), (A7)

where Θt represents body pose parameters in frame t.

A.4. Task Range and Extension Capabilities
Generalization Scope Despite using only four interac-
tion primitives, PrimHOI demonstrates a great general-
ization in diverse HOI tasks. Any task within the plan-
ning scope of these primitives can be successfully synthe-
sized. Once an object type is learned within a primitive, our



The human lifts the monitor using Clamp.

The human uses right hand (Grasp) to put the trashbin on left hand to support the object.

The person uses shoulder and hand to Dual Support the long box before passing the door.

two views

Figure A3. Our framework demonstrates robust generaliza-
tion across diverse object categories beyond training distribu-
tions. Generated HOI motions span various object types not en-
countered during training, validating PrimHOI’s ability to trans-
fer learned interaction patterns to novel geometric and functional
contexts. The alternative view of the second motion reveals ac-
curate contact normal computation for the Support primitive, con-
firming that PrimHOI maintains precise surface alignment even
when generalizing to unseen object shapes and interaction scenar-
ios.

(I) when find a new object 
cannot be Grasped by the 
learned Grasp contact primitive.  A Novel Task:

answer the 
phone and pick up 
a grocery bag 
from atable. 

High-lv Planning Result:
1.Grasp phone  l_hand  table
2.Grasp2Answer  phone  l_hand  head
3.Grasp  bag  r_hand  table
4.Pick  bag  r_hand  table

a). things to do when extending to a new primitive or new object

b). the generation results of the novel task (high-lv plan and low-level generation)

(II) when find a new contact primitive
 not exist in the PDDL-HOI

collect enough 
examples to learn

For High-lv Plan:
step 1. define a new 
action Grasp2Answer 
to  PDDL-HOI file and
 its part sample stream 
(r_hand, l_hand) 

For Low-lv Generation:
step 2. Construct a new contact
 primitive: AnswerPhone 

Low level Motion Generation - Result of Motion Segment #4

Figure A4. Our framework enables systematic extension to
novel interaction scenarios through structured primitive inte-
gration. The three-step extension methodology facilitates incor-
poration of new tasks requiring previously undefined interaction
primitives, while complete planning and generation results for the
“pickup grocery bag while answering phone” task illustrate suc-
cessful execution of the fourth planned action. This systematic
extensibility demonstrates our framework’s capacity to accom-
modate previously unseen interaction scenarios without requiring
fundamental architectural modifications, establishing a scalable
foundation for expanding human-object interaction capabilities.

method generates planning sequences for interactions with
that object (Fig. A3).

Temporal composition enables sequences like “pick first,
then place” or “clamp first, then place.” In contrast, spatial
composition allows flexible body part and object combina-
tions for Clamp, Support, and Dual Support interactions.

Extension to Unseen Tasks Extending PrimHOI to new
tasks like “picking up a grocery bag while answering a
phone” follows a straightforward process (Fig. A4):
1. Domain Update: Add new action definitions and

streams to PDDL-HOI (required only for new primitives,

not new objects).
2. Primitive Training: Train new interaction primitives

using example interactions and learn object placement
priors.

3. Pipeline Execution: Generate task plans and low-level
motion sequences.
For the grocery bag example, we manually select the

upper grasp points for the grocery bag and introduce the
Grasp2Answer action for the new AnswerPhone primi-
tive, defining phone-ear contact configurations.

Motion Diversity Motion diversity arises from multiple
sources: (1) variability in generated interaction primitive,
(2) Gaussian mixture sampling for object placement, and
(3) stochastic diffusion-guided human motion. The supple-
mentary video demonstrates the diversity in object place-
ments and primitive contact variations in different scenar-
ios.

B. Experiment Details
Our evaluation employs five human raters in all tasks. For
high-level planning, the raters collaboratively discuss and
reach consensus on task success, step efficiency, and plan
diversity using objective reasoning (Fig. A10). For low-
level evaluation, each rater independently scores task suc-
cess and motion naturalness (1.0-10.0 scale) using paired
comparison interfaces with three shuffled examples per
sheet.

B.1. High-Level Planning Evaluation Details
Fig. A10 presents detailed prompts and planning results for
the three methods evaluated in all tasks. Statistical analysis
with T-tests that compare other methods with ours is pro-
vided in Tab. A1. Each task was evaluated through multiple
runs: Tasks 1 and 2 (5 trials each), Task 3 (10 trials), with
five total runs per result. Failure cases were excluded from
cost calculations.

Our GPT-4o + PDDL-HOI method shows superior per-
formance in success rate and solution diversity while main-
taining competitive plan efficiency at all complexity levels.
In particular, in the complex Task 3, our method achieved a
success rate of 100% compared to GPT-4o 56% and GPT-4o
+ Primitives 18%.

B.2. Low-Level Evaluation Details
The low-level evaluation uses guided intermediate motions
from the three plans shown in the main paper. Although
limited in number, these motion segments distinguish suf-
ficiently between methods through quantitative and qualita-
tive analysis.

Baseline Implementations Inverse Kinematics (IK):
Employs DPoser [33] body pose prior with Contact Loss
(Eq. (A2)) and Temporal Loss (Eq. (A10)).



Table A1. Statistical comparison of high-level planning meth-
ods across three tasks. Each task was evaluated over five runs
with varying trial counts (Tasks 1-2: 5 trials per run; Task 3:
10 trials per run). T-tests compare baseline methods against our
GPT-4o + PDDL-HOI approach, excluding failure cases from ef-
ficiency calculations. Our method achieves statistically significant
improvements in success rate and solution diversity.

Task 1: Pick up two boxes from table

Method Success Rate T-statistic P-value

GPT-4o 3/5, 4/5, 4/5, 4/5, 5/5 -3.16 1.33e-2
GPT-4o + PDDL-HOI (ours) 5/5, 5/5, 5/5, 5/5, 5/5 – –

Method Plan Efficiency T-statistic P-value

GPT-4o 5.3, 5.5, 5.8, 5.8, 6.0 7.73 5.59e-05
GPT-4o + PDDL-HOI (ours) 4.4, 4.4, 4.6, 4.6, 4.8 – –

Method Solution Diversity T-statistic P-value

GPT-4o 1, 1, 2, 2, 2 -1.63 1.41e-1
GPT-4o + PDDL-HOI (ours) 2, 2, 2, 2, 2 – –

Task 2: Carry long box passing the door

Method Success Rate T-statistic P-value

GPT-4o 5/5, 5/5, 5/5, 5/5, 5/5 – –
GPT-4o + Primitives 5/5, 5/5, 5/5, 5/5, 5/5 – –
GPT-4o + PDDL-HOI (ours) 5/5, 5/5, 5/5, 5/5, 5/5 – –

Method Plan Efficiency T-statistic P-value

GPT-4o 4.0, 4.0, 4.0, 4.0, 4.0 – –
GPT-4o + Primitives 4.0, 4.2, 4.2, 4.2, 4.4 3.16 1.33e-2
GPT-4o + PDDL-HOI (ours) 4.0, 4.0, 4.0, 4.0, 4.0 – –

Method Solution Diversity T-statistic P-value

GPT-4o 1, 1, 1, 1, 2 -4.0 3.95e-3
GPT-4o + Primitives 1, 2, 2, 2, 2 -1.00 3.47e-1
GPT-4o + PDDL-HOI (ours) 2, 2, 2, 2, 2 – –

Task 3: Pick up two boxes and open the door

Method Success Rate T-statistic P-value

GPT-4o 5/10, 5/10, 5/10, 6/10, 7/10 -11.0 4.15e-6
GPT-4o + Primitives 1/10, 2/10, 2/10, 2/10, 2/10 41.0 1.38e-10
GPT-4o + PDDL-HOI (ours) 10/10, 10/10, 10/10, 10/10, 10/10 – –

Method Plan Efficiency T-statistic P-value

GPT-4o 8.8, 8.8, 9.0, 9.3, 9.6 11.83 2.39e-6
GPT-4o + Primitives 5.0, 5.0, 5.0, 5.0, 5.0 -5.80 4.04e-4
GPT-4o + PDDL-HOI (ours) 5.4, 6.1, 6.3, 6.4, 6.5 – –

Method Solution Diversity T-statistic P-value

GPT-4o 2, 2, 2, 2, 2 -4.00 3.95e-3
GPT-4o + Primitives 1, 1, 1, 1, 1 -9.0 1.85e-5
GPT-4o + PDDL-HOI (ours) 2, 3, 3, 3, 3 – –

ProgMoGen: For non-walking tasks, uses “stands” mo-
tion prompts with foot constraints to prevent locomotion.

Statistical results with T-test analysis are detailed in
Tab. A2, demonstrating LocalControl’s superior perfor-
mance across most metrics, while ProgMoGen achieves
better motion smoothness (lower maximum acceleration).

B.3. Additional Evaluation Metrics
We introduce F-best, the measurement frequency of selec-
tion, as the best method among candidates. Five participants
selected the best from three examples in four tasks. The re-
sults in Tab. A3 show that our method was chosen as the
best in 17 of 20 choices, confirming the superiority in the
evaluation of human preferences.

Table A2. Human evaluation demonstrates LocalControl’s su-
perior performance in low-level motion generation. Five raters
scored task success and motion naturalness (1-10 scale) across
four motion synthesis tasks. T-tests compare baseline methods
against our LocalControl approach, showing statistically signifi-
cant improvements in both metrics across most tasks.

Task 1: One part move with contact trajectory guidance

Method Success Score T-statistic P-value

IK 6.0, 6.0, 6.5, 6.7, 6.0 -3.26 1.16e-2
ProgMoGen 7.0, 6.0, 6.4, 6.6, 6.7 -3.13 1.40e-2
LocalControl (ours) 8.0, 7.0, 7.4, 7.0, 7.2 – –

Method Naturalness Score T-statistic P-value

IK 6.0, 7.0, 6.3, 6.7, 6.5 -7.01 1.11e-4
ProgMoGen 8.0, 7.0, 6.7, 7.5, 7.2 -3.43 8.90e-3
LocalControl (ours) 8.0, 9.0, 8.3, 8.0, 8.1 – –

Task 2: Start and end position targeting

Method Success Score T-statistic P-value

ProgMoGen w/o Trajectory 2.0, 3.0, 2.4, 3.3, 2.5 -15.87 2.49e-7
LocalControl w/o Trajectory 7.0, 6.0, 7.0, 6.5, 6.3 -2.81 2.27e-2
LocalControl w/ Trajectory (ours) 8.0, 7.0, 7.4, 7.0, 7.2 – –

Method Naturalness Score T-statistic P-value

ProgMoGen w/o Trajectory 4.0, 5.0, 5.2, 4.5, 3.5 -10.49 5.93e-6
LocalControl w/o Trajectory 6.0, 4.0, 5.3, 4.8, 4.5 -8.60 2.59e-5
LocalControl w/ Trajectory (ours) 8.0, 9.0, 8.3, 8.0, 8.1 – –

Task 3: One part move with goal contact achievement

Method Success Score T-statistic P-value

IK 6.3, 6.0, 7.0, 6.4, 6.0 -7.29 2.63e-5
ProgMoGen 8.0, 8.5, 7.4, 7.0, 7.8 -1.45 1.80e-1
LocalControl (ours) 8.4, 9.0, 8.0, 7.8, 7.6 – –

Method Naturalness Score T-statistic P-value

IK 6.0, 7.0, 6.3, 6.6, 6.5 -8.29 3.38e-5
ProgMoGen 8.0, 8.0, 7.4, 7.5, 8.5 -2.09 7.01e-2
LocalControl (ours) 8.0, 8.9, 8.6, 8.5, 8.1 – –

Task 4: Two-step sequential motions

Method Success Score T-statistic P-value

ProgMoGen 5.0, 5.3, 5.4, 5.1, 4.8 -11.06 3.98e-6
LocalControl x1 7.0, 6.0, 6.4, 6.3, 6.0 -4.28 2.70e-3
LocalControl x2 (ours) 8.0, 7.0, 7.5, 7.1, 7.6 – –

Method Naturalness Score T-statistic P-value

ProgMoGen 6.0, 5.7, 6.2, 5.9, 6.0 -2.82 3.14e-2
LocalControl x1 6.0, 5.6, 7.0, 6.5, 6.1 8.28e-1 4.34e-1
LocalControl x2 (ours) 6.0, 7.0, 6.6, 6.5, 6.3 – –

C. Ablations

C.1. Contact Primitive Model Ablation

We evaluated different configurations by comparing denois-
ing steps (100, 200, 1000) and object scale normalization
(Tab. A4). Evaluation uses Clamp Success and Grasp Suc-
cess rates assessed by human evaluators based on physical
stability in four types of objects: box, monitor, plastic con-
tainer, and trashcan.

Key findings:
• Grasp model: Normalization does not improve perfor-



Table A3. Human preference evaluation confirms PrimHOI’
superiority. F-best measures how frequently each method was
selected as the best among candidates by five evaluators across
four tasks. Our LocalControl variants achieve 17 out of 20 best
selections, demonstrating clear human preference for PrimHOI.

Task 1 Methods F-best ↑ Task 2 Methods F-best ↑

IK 0 ProgMoGen w/o Trajectory 0
ProgMoGen 0 LocalControl w/o Trajectory 5
LocalControl (ours) 5 LocalControl w/ Trajectory –

Task 3 Methods F-best ↑ Task 4 Methods F-best ↑

IK 0 ProgMoGen 0
ProgMoGen 1 LocalControl x1 2
LocalControl (ours) 4 LocalControl x2 (ours) 3

Table A4. Ablation study reveals optimal contact primitive
model configuration. We compare different denoising step counts
and normalization strategies on Clamp and Grasp primitive suc-
cess rates across multiple object types. The 200-step configuration
with normalization provides the best efficiency-accuracy trade-off,
achieving 92% success for Clamp while maintaining reasonable
Grasp performance.

Configuration Clamp Success Grasp Success

1000 steps w/o normalization 0.46 0.79
100 steps w/o normalization – 0.61
200 steps w/o normalization (our Grasp) 0.54 0.81
1000 steps w/ normalization 0.93 –
100 steps w/ normalization 0.77 –
200 steps w/ normalization (our Clamp) 0.92 0.57

mance, possibly disrupting fixed hand-to-wrist distance
constraints.

• Clamp model: Normalization significantly improves
success rate (from 0.54 to 0.92).

• Denoising steps: 200 and 1000 steps perform well; 100
steps show deterioration.
Based on these results, we selected 200 denoising

steps with normalization to achieve an optimal efficiency-
accuracy balance for Clamp and without normalization for
Grasp (Fig. A5).

C.2. Post-Optimization Terms Ablation
We evaluated four specific loss terms beyond the essential
contact and prior losses (Fig. A6):
• Normal Loss: Improves Support contact quality:

Enormal =

T−1∑
t=0

∑
Pi

cosine(nh
i − no

i )
Pi . (A8)

• Self-Penetration & Object Collision Loss: Minimize
human-object penetrations using SDF metrics:

Epene =

T−1∑
t=0

∑
pi

min(sdfbody(vpi), 0). (A9)

Typical failures without
normalization - Clamp

With normalization
- Clamp

Typical failures with fewer
steps (100) - Grasp

With suitable steps
(200/1000) - Grasp

Figure A5. Normalization enables better cross-dataset gener-
alization for contact primitive models. The Clamp model shows
dramatically improved success when normalization is applied dur-
ing cross-dataset evaluation (BEHAVE objects after OMOMO
training). Similarly, increased denoising steps benefit Grasp primi-
tive generation, with 200 and 1000 steps substantially outperform-
ing 100 steps. Red and blue texts indicate successful and failed
contact generation, respectively.

a). post optimization process   

SDF:

The other view

                              Post-Optimization: transfer guided skeleton motion to human and object mesh

b). ablation study on loss terms of post-optimization

Normal Loss Self-Penetration Loss Object Collision Loss Temporal Smoothness

The other
 view:

With: Without: With: Without: With: Without: With: Without:

SDF:

The other view

4.710.593 1.22 89.9

Max Accel: 0.129 0.146

Max Accel (Max Joint Acceleration)

Figure A6. Individual optimization terms address distinct mo-
tion quality challenges. Contact guidance trajectories (green)
demonstrate the post-optimization process, while ablation results
reveal each term’s specific contribution. Self-Penetration and Ob-
ject Collision losses leverage SDF evaluation to eliminate body-
body and human-object intersections, respectively. The Object
Collision example shows successful prevention of hand-object col-
lision before Support contact establishment, illustrating how each
term targets essential aspects of realistic HOI generation.

where pi denotes the part to avoid collision, either one
object or one body part, and vpi represents the vertices of
the part.

• Temporal Loss: Enhances motion smoothness across
three motion sequences:

Etemporal =

T−1∑
t=0

ρ(vh
t+1 − vh

t ), (A10)

Qualitative examples demonstrate each term’s effective-
ness in addressing specific motion quality issues, with SDF-
based evaluation confirming reduced penetration artifacts.



The person clamps the second box using chest and elbow.

The person uses the free hand to open the door.

The person clamps the second box using chest and the first box.

The person uses the free hand to open the door.

<plan 2>

<plan 3>

Figure A7. Solution diversity emerges naturally from our
structured planning framework. Two alternative solutions for
the “pick up two boxes and open the door” task demonstrate
PrimHOI’s capability to generate multiple valid planning strate-
gies for identical high-level objectives. Each solution employs dis-
tinct primitive combinations and sequencing approaches, illustrat-
ing how our PDDL-HOI framework enables flexible strategy ex-
ploration while maintaining task completion guarantees.

D. Qualitative Results and Failure Analysis
D.1. Additional Qualitative Results
Beyond the solution presented in the main paper, Fig. A7
shows two additional solutions for the task “pick up two
boxes and open the door,” demonstrating PrimHOI’s plan-
ning diversity. Fig. A3 presents generated HOI motions
for various objects, illustrating generalization capabilities
in different object categories.

The supplementary video further demonstrates motion
diversity arising from variations in object placement and
diverse generated interaction primitives. These examples
highlight the compositional flexibility achieved through our
interaction primitive framework.

D.2. Failure Analysis
We identify three primary failure modes in our method
(Fig. A8):

Penetration During Key Pose Generation Despite col-
lision loss penalties, joint optimization with contact
constraints can still produce body-object penetrations
(Fig. A8(i)). This occurs when contact constraints override

Table A5. High-level planning components achieve perfect re-
liability across complex tasks. Individual component evaluation
using the “pick two boxes and open door” task over 5 runs demon-
strates that both goal constraint translation and PDDL planning
maintain consistent performance, establishing a robust foundation
for the overall pipeline.

High-Level Steps Goal Constraints Translation PDDL Planning
(GPT-4o) (PDDL-HOI)

Success Rate 5/5 100%

collision avoidance, requiring stronger pose priors, empha-
sizing collision-free configurations.

Incorrect Grasping Poses Relying solely on contact
points for grasp constraints occasionally produces unreal-
istic grasps (Fig. A8(ii)). Although normal loss could im-
prove accuracy, problematic edge normals on objects com-
plicate this approach. A more sophisticated grasping pose
model that incorporates geometric reasoning would address
this limitation.

Interpolation Collisions Post-optimization of only
keyframes followed by linear interpolation, can cause
intermediate collisions with objects (Fig. A8(iii)). This
occurs because the interpolation ignores the position of
objects during transitions. Local motion models with
collision avoidance or complete sequence optimization
could mitigate this problem.

D.3. Multi-Stage Pipeline Failures
Our modular design enables zero-shot generalization but
introduces potential failures by separating interdependent
variables. However, this structure facilitates the detection
of isolated failures and targeted corrections.

The primary issue involves the contradictions be-
tween high-level plans and detailed human-object layouts
(Fig. A8(iv)). This can be resolved by identifying and re-
sampling plans based on large SDF penalty terms during
key pose generation or post-optimization.

Success Rate Analysis Tabs. A5 and A6 provide detailed
step-wise success rates for the “pick two boxes and open
door” task. High-level planning achieves 100% success in
goal constraint translation (GPT-4o) and PDDL planning
(semantic validity guaranteed).

The low-level generation shows an overall success rate of
88.4%, with individual components performing as follows:
• Primitive contact generation: 92% (Clamp), 81% (Grasp)
• Key pose generation: 96.8% (92/95)
• Object motion planning: 100% (92/92)
• Contact-guided motion: 100% (92/92)
• Post-optimization: 91.3% (84/92)

Some failures result from optimization randomness,
which multiple sampling attempts and improved pose pri-
ors could mitigate.



i) Penetration 
with Objects

ii) Bad Grasp iii) Local Collided Motion

Generated
contacts

Planned two frames

Interpolation w/o collision avoidance

Original plan-i: right hand pick the red box.

Resampled plan-ii: left
 hand pick the red box.Correct-v:

won’t 
collide with
 green box.

layout-I layout-II

Collide-X: 
SDF 5.23 > 0.1 
with green box.

Correct-v:
no collide.

iv) Potential failure of high-level plan 
on a different object layout 

Figure A8. Systematic failure analysis identifies four distinct limitation categories in our pipeline. Body-object penetration occurs
during key pose generation despite collision loss constraints, while incorrect grasp poses result from contact-point-only optimization
without full hand orientation consideration. Interpolation-induced collisions emerge between optimized keyframes, and high-level plan
contradictions arise when detailed human-object spatial layouts conflict with abstract planning assumptions. Each failure mode provides
targeted directions for addressing specific pipeline limitations in future development.

Table A6. Component-wise analysis reveals robust low-level generation pipeline performance. Detailed evaluation of each pipeline
stage using the “pick two boxes and open door” task shows consistently high success rates across most components. The 88.4% overall
success rate demonstrates effective multi-stage coordination, while failures in the key-pose generation and post-optimization stem primarily
from optimization randomness rather than systematic issues.

Low-Level Steps Primitive Key Pose Object Motion Contact-Guided Post Overall
Contact Gen. Generation Planning Human Motion Optimization Success

Success Rate 92% (Clamp) 96.8% 100% 100% 91.3% 88.4%
81% (Grasp) (92/95) (92/92) (92/92) (84/92) (84/95)

E. Discussion and Limitations

While our framework demonstrates effective complex HOI
motion generation through compositional primitives and hi-
erarchical planning, several limitations warrant discussion.

E.1. Motion Naturalness

Unnaturalness in generated motions stems from challenges
in joint human-object motion optimization. Our modular
design enables zero-shot generalization, but creates difficul-
ties in seamlessly reassembling components.

The unnaturalness arises from three sequential pro-
cesses:

Object Motion Planning A* search with SDF-based col-
lision avoidance produces geometrically valid but unnatural
object trajectories. Despite reduced step sizes for smoother
motion, the lack of real-world movement priors creates ar-
tificial motion patterns.

Contact-Guided Human Motion Our learned motion
prior partially addresses object unnaturalness by adjust-
ing trajectories based on human contact patterns (Fig. A9).
However, limited training data for certain interactions (e.g.,
“clamp under shoulder”) prevents natural “last-mile” tran-
sitions and acceleration profiles.

Contact guidance Guided Result𝐶! 𝐶!"#

Figure A9. LocalControl generates smooth intermediate mo-
tion between key poses. Using planned contact points as guid-
ance, our model produces natural trajectories that connect poses
Ck and Ck+1. The comparison shows that guided motion signif-
icantly outperforms raw contact interpolation, demonstrating the
importance of controllable motion models for realistic HOI syn-
thesis.

Post-Optimization Final optimization incorporates hu-
man pose priors [33], contact constraints, and temporal
smoothness. Unnaturalness persists due to unnatural last-
mile regions in guided motion and limitations of static pose
priors that do not jointly optimize temporal dynamics and



contacts.
A joint human-object motion prior incorporating both

kinematic constraints and physical interactions would ad-
dress these issues. However, existing datasets (BEHAVE,
OMOMO, HumanML3D) lack sufficient SMPL-X format-
ted training data for such models.

E.2. Technical Limitations
Global Motion Control Our guided motion model fo-
cuses on local operations and does not adequately handle
locomotion or significant root movement, which prevents
its extension to walking sequences. Enhanced model flexi-
bility is crucial for dynamic whole-body coordination.

Grasp Accuracy Contact-point-only constraints lead to
inaccurate grasp poses. Although normal constraints could
improve accuracy, normal issues on the surface of the ob-
ject, especially at edges, complicate implementation.

Computational Efficiency The pipeline requires signifi-
cant computation time (approximately 40 seconds per mo-
tion segment) due to optimization and intermediate motion
generation. Pre-computing contact primitives partially mit-
igates this, but post-optimization remains computationally
intensive.

Future improvements include: developing joint human-
object motion priors, incorporating physics-based motion
models (PULSE, PHC, AMP), enhancing guided motion
model precision, and optimizing computational efficiency
through better initialization and fewer optimization itera-
tions.



Task-2: carry a long box passing the door

GPT-4o + Primitive

Task-3: pick up two boxes and open the door

GPT-4o + PDDL-HOI

Task-1: pick up two boxes from table

GPT-4o + PDDL-HOIGPT-4o

Prompt: Hi, Task: there are two boxes on the table, you need to 
carry them on body, plan the motion sequence of a human. 
Please be simple, just give a list of planned actions.

GPT-4o (Problem Translator)

Planning
Problem:

Initial state:
(Support box1 table)
(Support box2 table)

Hi, Task: …... Predicates: (Support ?o ?bp) - object o supported by 
one part bp; (Holden ?o) - object o is holden by the human body. 
Please translate the task’s initial and goal states in the format.

Goal state:
(Holden box1)
(Holden box2)

Planned results:

Plan 2:
1) grasp box2 lefthand table
2) pick box2 lefthand table
3) place box2 lefthand right_hand
4) grasp box1 lefthand table
5) pick box1 lefthand table

Plan 1:
1) grasp box2 lefthand table
2) pick box2 lefthand table
3) grasp box1 righthand table
4) pick box2 righthand table

Plan 1:
1) Grasp First Box
2) Lift First Box
3) Stabilize the box against 
the torso or arm
4) Grasp Second Box
5) Lift Second Box

Plan 2:
1) Grasp First Box
2) Lift First Box
3) Stabilize the box against the torso 
or arm
4) Grasp Second Box
5) Place Second Box on top of Box 1
6) Stabilize both boxe against the 
torso

GPT-4o

Hi, Task: there is a very 
long box to pick up and you 
need to pass the door, plan 
the motion sequence. ……

Prompt: Planning
Problem:

Initial state:
(Support box1 table)
Goal state:
(IsDualSupport Box1)

Hi, Task: there is a very long box to pick up and you 
need to pass the door. Prior knowledge: You can use two 
parts to support it. There are the options of the parts:
[two hands, shoulder]. ……

Planned results:
Plan 1:
1) Use both hands to firmly grasp the ends of 
the box
2) Lift the Box
3) Rotate or tilt the box if necessary to align 
with the door’s width
4) Pass the door

Planned results:

Plan 2:
1) grasp box1 righthand table
2) pick box1 righthand table
3) grasptodualsupport obj1 
righthand rightshoulder
4) walk (Pass the door)

Planned results:

Plan 2:
1 Grasp the box
2) Lift the box to the shoulder
3) Adjust body orientation to 
align with the door direction
4) Rotate shoulders to fit the box 
through the doorframe
5) Pass the door

Plan 1:
……

Plan 1:
……

GPT-4o + Primitive GPT-4o + PDDL-HOIGPT-4o

Hi, Task: pick two boxes on 
the table and open the door,
plan the motion
sequence. ……

Prompt: Initial state:
(Support box1 table)
(Support box2 table)

Goal state:
(Holden box1)
(Holden box2)
(IsReached Doorknob)

Hi, Task: …... Prior knowledge: Support one object 
with one part - can use [box, hands]; Clamp one 
object using two parts - can use [box & chest, elbow &
chest, or Hand & chest]; Grasp using one hand.

Plan 1: Clamp box2 under shoulder
1) grasp box1 lefthand table
2) pick box1 lefthand table
3) grasp box2 righthand table
4) grasptoclamp box2 righthand 

leftelbow l_torsoside
5) reachoperate righthand doorknob

Plan 2: Place box2 on top of box1
......
3) place box1 righthand lefthand
......
6) pick box2 righthand table
7) place box2 righthand box1
8) reachoperate righthand doorknob

Plan 3: Use box2 to clamp box1
……
4) pick box2 righthand table
5) grasptoclamp box2 righthand box1 
chest
6) reachoperate righthand doorknob

Plan 1: Clamp box under shoulder
1) Grasp box1 using right hand.
2) Pick box1 from the table
3) Grasp box2 using left hand
4) Clamp box2 between the chest and 

left elbow, freeing the left hand
5) Open the door using the left hand

Failure Examples
Failure Case: Bad state transition
1). Grasp box1 with right hand
2). Support box2 using left hand
3). Clamp box2 between left hand 
and chest
4). Reach right hand to door handle
5). Open door with right hand while 
clamping box2

One Failure Example

Plan 1: Put down one
1) Grasp box1 2) Lift box1
3) Grasp box2 4) Lift box2 
5) Set down box1 6) Open door with the free hand

7) Regrasp box1 8) Lift box1
Plan 2: Put down two
1) Grasp box1 2) Lift box1 3) Place box1 near the door
4) Grasp box2 5) Lift box2 6) Place box1 near the door
7) Open door with free hand 8) Grasp box1 …….

Failure Case1: Use occupied left hand
1). Grasp box1 with right hand 2) Lift box1
3). Grasp box1 with left hand 4) Lift box2
5) Use the left hand (still holding one box) to reach for 
the door handle
Failure Case2: Use occupied left hand while Support
……
3) Place box1 on the left hand. ……
5). Use left hand to open the door.

Figure A10. Comprehensive planning evaluation demonstrates systematic superiority of our structured approach. Complete
prompts and planning outputs across three methods and all evaluation tasks reveal distinct performance patterns, where bold text indi-
cates redundant steps and red text highlights planning failures. GPT-4o problem translations for Tasks 2-3 are omitted for brevity while
maintaining result completeness. The systematic comparison establishes that our GPT-4o + PDDL-HOI method achieves superior precision
and solution diversity compared to baseline approaches, validating the effectiveness of structured domain knowledge integration.
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